Bhattacharyya-based GMM-SVM system with adaptive relevance factor for pair language recognition

نویسندگان

  • Chang Huai You
  • Haizhou Li
  • Eliathamby Ambikairajah
  • Kong-Aik Lee
  • Bin Ma
چکیده

In this paper, we develop a hybrid system for pair language recognition using Gaussian mixture model (GMM) supervector connecting to support vector machine (SVM). The adaptation of relevance factor in maximum a posteriori (MAP) adaptation of GMM from universal background model (UBM) is studied. In conventional MAP, relevance factor is empirically given by a constant value. It has been proven that the relevance factor can be dependent to the particular application. We use the relevance factor to control the degree of influence from the observed training data for more effectiveness. In order to design a robust pair language recognition system, we develop a hybrid scheme by using separate-training Bhattacharyya-based kernels with the adaptive relevance factor applied. The pair language recognition system is verified on National Institute of Standards and Technology (NIST) language recognition evaluation (LRE) 2011 task. Experiments show the improvement of the performance brought by the proposed scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Relevance Factor of Maximum a posteriori Adaptation for GMM-SVM in Speaker and Language Recognition

Gaussian mixture model support vector machine (GMMSVM) with nuisance attribute projection (NAP) has been found to be effective and reliable for speaker and language recognition. In maximum a posteriori (MAP) adaptation of GMM, the relevance factor is the parameter that regulates how much the adaptation data affect the base model, which impacts the final recognition performance. In our previous ...

متن کامل

Study on the Relevance Factor of Maximum a Posteriori with GMM for Language Recognition

In this paper, the relevance factor in maximum a posteriori (MAP) adaptation of Gaussian mixture model (GMM) from universal background model (UBM) is studied for language recognition. In conventional MAP, relevance factor is typically set as a constant empirically. Knowing that relevance factor determines how much the observed training data influence the model adaptation, thus the resulting GMM...

متن کامل

مقایسه روش های طیفی برای شناسایی زبان گفتاری

Identifying spoken language automatically is to identify a language from the speech signal. Language identification systems can be divided into two categories, spectral-based methods and phonetic-based methods. In the former, short-time characteristics of speech spectrum are extracted as a multi-dimensional vector. The statistical model of these features is then obtained for each language. The ...

متن کامل

Comparison between Gmm-svm Sequence Kernel and Gmm: Application to Speech Emotion Recognition

Speech emotion recognition aims at automatically identifying the emotional or physical state of a human being from his or her voice. The emotional state is an important factor in human communication, because it provides feedback information in many applications. This paper makes a comparison of two standard methods used for speaker recognition and verification: Gaussian Mixture Models (GMM) and...

متن کامل

A hybrid modeling strategy for GMM-SVM speaker recognition with adaptive relevance factor

In Gaussian mixture model (GMM) approach to speaker recognition, it has been found that the maximum a posteriori (MAP) estimation is greatly affected by undesired variability due to varying duration of utterance as well as other hidden factors related to recording devices, session environment, and phonetic contents. We propose an adaptive relevance factor (RF) to compensate for this variability...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012